Aerojet Rocketdyne Targets $25 Million Per Pair For AR-1 Engines


Aerojet Rocketdyne is targeting a cost of $20-25 million for each pair of new AR-1 engines as the company continues to lobby the government to fund an all-new, U.S.-sourced rocket propulsion system, says Scott Seymour, president and CEO of the company’s parent, GenCorp.


Including legacy systems and various risk-reduction projects, Aerojet Rocketdyne has spent roughly $300 million working on technologies that will feed into the AR-1, Seymour said during a June 3 roundtable with Aviation Week editors. The effort to build a new, 500,000-lb. thrust liquid oxygen/kerosene propulsion system would take about four years from contract award and cost roughly $800 million to $1 billion.

Such an engine is eyed for United Launch Alliance’s (ULA) Atlas V rocket as well as Orbital’s Antares and, possibly, Space Exploration Technology’s Falcon 9 v1.1.

This is roughly the same price cited for the cost of standing up U.S. co-production of the RD-180 engine, which is manufactured by NPO Energomash of Russia and sold to ULA for the Atlas V through a joint venture with Pratt & Whitney.

"We certainly believe [the AR-1 will be] on a par – if not better – than the performance of the RD-180. We also believe it is going to be more affordable," Seymour said. "With each launch vehicle having it its own engine, trying to get any kind of economic buy quantity has been a struggle for us. We really believe with the AR-1 approach, we have a multitude of applications for the engine."

SpaceX’s Falcon 9v1.1 is powered by the company’s own Merlin 1D engine, but Seymour says he hopes the AR-1 is competitive enough in pricing to earn a place even on this platform. SpaceX founder Elon Musk has focused his company on vertical integration to support quick development timelines.

USAF Commission Urges New Engine To Mitigate Atlas V Gap

ULA would not release the per-unit cost of the RD-180 for the Atlas V. SpaceX did not reply to requests on its Merlin engine price; nine Merlin 1Ds are used per Falcon 9 v1.1 launch.

Seymour says the company envisions an engine that can mate with multiple boosters, helping to increase the production volume and, eventually, keep pricing and sourcing stable. "I believe it brings the engines in the space industry more toward the model of aircraft engines … the destination for those engines are any multitude of aircraft applications," he said.

Eventually, Seymour envisions this engine could be a foundation for NASA’s Space Launch System rocket bound for Mars, though he did not give details on the path to get there.

Aerojet Rocketdyne has put its own internal research and development funding toward pieces of the system, but is awaiting funding for a government project, likely to come in fiscal 2016, Seymour said. Despite a tight fiscal environment in Washington, momentum for a new hydrocarbon engine has grown substantially in recent weeks due largely to an aversion of lawmakers to continue buying Russian-made engines in light of Russia’s annexation of Crimea.

Yorumlar